Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells.

نویسندگان

  • Genta Narazaki
  • Hideki Uosaki
  • Mizue Teranishi
  • Keisuke Okita
  • Bongju Kim
  • Satoshi Matsuoka
  • Shinya Yamanaka
  • Jun K Yamashita
چکیده

BACKGROUND Induced pluripotent stem (iPS) cells are a novel stem cell population induced from mouse and human adult somatic cells through reprogramming by transduction of defined transcription factors. However, detailed differentiation properties and the directional differentiation system of iPS cells have not been demonstrated. METHODS AND RESULTS Previously, we established a novel mouse embryonic stem (ES) cell differentiation system that can reproduce the early differentiation processes of cardiovascular cells. We applied our ES cell system to iPS cells and examined directional differentiation of mouse iPS cells to cardiovascular cells. Flk1 (also designated as vascular endothelial growth factor receptor-2)-expressing mesoderm cells were induced from iPS cells after approximately 4-day culture for differentiation. Purified Flk1(+) cells gave rise to endothelial cells and mural cells by addition of vascular endothelial growth factor and serum. Arterial, venous, and lymphatic endothelial cells were also successfully induced. Self-beating cardiomyocytes could be induced from Flk1(+) cells by culture on OP9 stroma cells. Time course and efficiency of the differentiation were comparable to those of mouse ES cells. Occasionally, reexpression of transgene mRNAs, including c-myc, was observed in long-term differentiation cultures. CONCLUSIONS Various cardiovascular cells can be systematically induced from iPS cells. The differentiation properties of iPS cells are almost completely identical to those of ES cells. This system would greatly contribute to a novel understanding of iPS cell biology and the development of novel cardiovascular regenerative medicine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction

Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 118 5  شماره 

صفحات  -

تاریخ انتشار 2008